原函數與導函數的關系_第1頁
已閱讀1頁,還剩6頁未讀 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

1、課題:探究原函數與導函數的關系課題:探究原函數與導函數的關系首師大附中首師大附中數學組數學組王建華王建華設計思路設計思路這節(jié)課是在學完導數和積分之后,學生從大量的實例中對原函數和導函數的關系有了一定的認識的基礎上展開教學的。由于這部分內容課本上沒有,但數學內部的聯系規(guī)律和對稱美又會使學生既覺得有挑戰(zhàn)性又充滿探究的興趣。備這個課的過程中我雖然參考了大量已有的資料,但需要做更深入地思考這些命題間的聯系,以什么方式展開更利于學生拾級而上,最終

2、登上高峰體會一覽眾山小的樂趣和成就感。教師實際上是在引導學生進行一次理論的探險,大膽地猜,小心地證,謹慎地修改條件,步步逼近真理。最終學生能否記住這些結論并不重要,重要的是研究相互關聯的事物的一般思路和方法。對優(yōu)秀生或熱愛數學的學生來說會有更多的收獲。整個教學流程整個教學流程1.從經驗觀察發(fā)現,猜想得命題pq.這兩個命題為真命題,證明它們的方法用復合函數求導,比較容易上手。2.學生自然會想到這個命題的逆命題是否成立,嘗試證明。證明的思路

3、也要逆向思考。發(fā)現由于導數確定后原函數不能唯一確定,有上下平移的可能,這樣關于y軸對稱的性質能夠保持,但關于原點對稱的性質就不能保證了。3.函數的平移不改變函數圖象的對稱性,因此將奇函數的性質拓展為關于中心對稱,將偶函數的性質拓展為關于直線對稱,研究前面的四個命題還是否成立。研究方法可以xa?類比遷移前面的方法。能成立的嚴格證明,不能成立的舉出反例,并嘗試通過改變條件使之成為真命題。4.已有成果的應用:利用二次函數的對稱性性質研究三次函

4、數的對稱性。教學目標教學目標在這個探究過程中1.加強學生對導函數與原函數相生相伴的關系的理解;2.增強學生對函數對稱性的理解和抽象概括表達能力;3體驗研究事物的角度,一個新定理是怎樣誕生的,怎樣才是全面地認識了一個事物。4.培養(yǎng)學生的思辨能力,分析法解決問題的能力,舉反例的能力等等。教學重點教學重點以原函數與導函數的對稱性的聯系為載體讓學生體驗觀察發(fā)現、概括猜想、辨別真?zhèn)蔚倪^程。教學難點教學難點靈活運用所學知識探索未知領域。新課引入前面

5、解題時我們常根據導函數的符號示意圖畫出原函數的單調性示意圖,你能根據原函數的圖像畫出導函數的示意圖嗎?一探究由原函數的奇偶性能否推出導函數的奇偶性。若將理解將中的替換為得到的函數,可以用導數定義證明。()fx?()fxxx?證明:當是奇函數時對定義域中的任意都有()yfx?x()fx?000()()()()()()()limlimlimxxxfxxfxfxxfxfxfxxfxxxx?????????????????????????所以時

6、偶函數()yfx?分析2.用復合函數求導證明:當是奇函數時,對定義域中的任意都有()yfx?x()()fxfx???兩邊對求導得,即x[()][()]fxfx???()(1)()fxfx?????得,所以時偶函數()()fxfx??()yfx?命題q同理可證.思考:看來已知原函數的奇偶性,我們可以確定導函數的奇偶性,那么已知導函數的奇偶性能否推知原函數的奇偶性呢?命題p和q的逆命題是否成立呢?二探究由導函數的奇偶性能否推出原函數的奇偶性

7、。二探究由導函數的奇偶性能否推出原函數的奇偶性。問題問題4p和q的逆命題是否成立?的逆命題是否成立?p的逆命題:若是偶函數,則奇函數()yfx?()yfx?此命題不正確,可舉出反例:如是奇函數,而原函數()yfxx??21()2yfxxc???當c不為0時,原函數不是偶函數。這是什么原因造成的呢?因為原函數定了,導函數是唯一確定的,而同一個導函數的原函數有無窮多個。一個函數向上或向下平移后導函數是不變的,直觀理解是切線的斜率不變。而函數

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 眾賞文庫僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論